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1 Model Specification

Consider a Gaussian model where the log spot price st of a commodity depends on NL

spanned state variables Lt, which may be latent or observed, and NM unspanned state

variables Mt that are observed:

 Lt+1

Mt+1

 = KP
0X +KP

1XXt + ΣXε
P
t+1

Lt+1 = KQ
0L +KQ

1LLt + ΣLε
Q
t+1

st = δ0 + δ′1Lt

(1)

where

• P denotes dynamics under the physical measure

• Q denotes dynamics under the risk neutral measure

• εQL,t+1 ∼ N(0, INL), εPt+1 ∼ N(0, IN)

• ΣL is the top left NL ×NL block of ΣX ; ΣL, ΣX are lower triangular

(1) is equivalent to specifying the equation for st and the P-dynamics plus a lognormal affine

discount factor with ’essentially affine’ prices of risk as in Duffee (2002). For NM = 0 the

framework includes models such as Gibson and Schwartz (1990); Schwartz (1997); Schwartz

and Smith (2000); Casassus and Collin-Dufresne (2005) as special cases (see Appendix 1.4).

Standard recursions show that (1) implies affine log prices for futures,

ft = A+BLt (2)

ft =
[
f 1
t f 2

t ... fJt

]′
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where f jt is the price of a j period future and J is the number of futures maturities.

Estimating the model as written presents difficulties; with two spanned factors and two

macro factors there are 40 free parameters, and different sets of parameter values may be

observationally equivalent due to rotational indeterminacy. Discussing models of the form

(1) for bond yields, Hamilton and Wu (2012) refer to “tremendous numerical challenges

in estimating the necessary parameters from the data due to highly nonlinear and badly

behaved likelihood surfaces.” In general, affine futures pricing models achieve identification

by specifying dynamics that are less general than (1).

Joslin, Singleton and Zhu (2011); Joslin, Priebsch and Singleton (2014) show that if NL

linear combinations of bond yields are measured without error then any term structure model

of the form (1) is equivalent to a model with those NL factors in place of the latent factors.

They construct a minimal parametrization where no sets of parameters are redundant -

models in the “JPS form” are unique. Thus the likelihood surface is well behaved and

contains a single global maximum. Their results hold to a very close approximation if the

linear combinations of yields are observed with relatively small and idiosyncratic errors.

Section 2 demonstrates the same result for futures markets: if NL linear combinations of

log futures prices are measured without error,

Pt = W ft (3)

for any full rank NL × J matrix W , then any model of the form (1) is observationally

equivalent to a unique model of the form
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 ∆Pt+1

∆UMt+1

 = ∆Zt+1 = KP
0 +KP

1Zt + ΣZε
P
t+1

∆Pt+1 = KQ
0 +KQ

1 Pt + ΣPεQt+1

st = ρ0 + ρ1Pt

(4)

parametrized by θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ), where

• λQ are the NL ordered eigenvalues of KQ
1

• p∞ is a scalar intercept

• ΣZ is the lower triangular Cholesky decomposition of the covariance matrix of innova-

tions in the state variables

• ΣPΣ′P = [ΣZΣ′Z ]NL , the top left NL ×NL block of ΣZΣ′Z

1.1 Pt Measured Without Error

In this paper I assume that while each of the log futures maturities is observed with iid

measurement error, the pricing factors P1
t and P2

t are measured without error.

f jt = Aj +BjPt + νjt , ν
j
t ∼ N(0, ζ2

j )

The use of the first two PCs of log price levels is not important: in unreported results I find

that all estimates and results are effectively identical using other alternatives such as the
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first two PCs of log price changes or of returns, or a priori weights such as

W =

 1 1 1 ... 1

1 2 3 ... 12



The identifying assumption that NL linear combinations of yields are measured without

error is commonly used in the literature. Given the model parameters, values of the latent

factors at each date are then extracted by inverting the relation (2). In unreported results I

find that all estimates and results are effectively identical if I allow the pricing factors to be

measured with error and instead estimate them via the Kalman filter.

1.2 Rotating to st and ct

Once the model is estimated in the JPS form, I rotate (P1
t ,P2

t ) to be the model implied log

spot price and instantaneous cost of carry, (st, ct). For st this is immediate:

st = ρ0 + ρ1Pt

For ct the definition is as follows. Any agent with access to a storage technology can buy

the spot commodity, sell a one month future, store for one month and make delivery. Add

up all the costs and benefits of doing so (including interest, costs of storage, and convenience

yield) and express them as quantity ct where the total cost in dollar terms = St(ect − 1).

Then in the absence of arbitrage it must be the case that

F 1
t = Ste

ct
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f 1
t = st + ct = EQ [st+1] + 1

2σ
2
s

ct = EQ [∆st+1] + 1
2σ

2
s

= ρ1[KQ
0 +KQ

1 Pt] + 1
2σ

2
s

1.3 Risk Premiums

Szymanowska et al. (2014) define the per-period log basis as

ynt ≡ fnt − st

They define the futures spot premium as

πs,t ≡ Et [st+1 − st]− y1
t

and the term premium as

πny,t ≡ y1
t + (n− 1)Et

[
yn−1
t+1

]
− nynt

In our framework, the spot premium can be expressed as

πs,t ≡ Et [st+1 − st]− y1
t

= EP
t [st+1]− f 1

t = EP
t [st+1]− EQ

t [st+1]− 1
2σ

2
s

= Λs
t −

1
2σ

2
s
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In our framework, the term premium for n = 2 (the smallest n for which a term premium

exists) can be expressed as

πny,t ≡ y1
t + (n− 1)Et

[
yn−1
t+1

]
− nynt

π2
y,t = f 1

t − st + EP
t

[
f 1
t+1 − st+1

]
− 2× 1

2(f 2
t − st)

= f 1
t + EP

t [st+1 + ct+1]− EP
t [st+1]− EQ[st+1 + ct+1]− 1

2σ
2
f1
t+1

= EQ[st+1] + 1
2σ

2
st+1 + EP

t [st+1 + ct+1]− EP
t [st+1]− EQ[st+1 + ct+1]− 1

2σ
2
f1
t+1

= Λc
t +

(1
2σ

2
st+1 −

1
2σ

2
f1
t+1

)

Thus the spot premium and term premium of Szymanowska et al. (2014) correspond

exactly to the risk premiums in our model Λs
t and Λc

t respectively, minus a Jensen term in

each case which in our framework is constant.

1.4 Comparison with other Futures Pricing Models

The model (1) is a canonical form, so any affine Gaussian model is nested by it. For example,

the Gibson and Schwartz (1990); Schwartz (1997); Schwartz and Smith (2000) two factor

model in discrete time is the following:

 ∆st+1

∆δt+1

 =

 µ

κα

+

 0 −1

0 −κ

 st

δt

+

 σ1 0

0 σ2

 1 ρ

ρ 1

1/2

εPt+1 (5)

 ∆st+1

∆δt+1

 =

 r

κα− λ

+

 0 −1

0 −κ

 st

δt

+

 σ1 0

0 σ2

 1 ρ

ρ 1

1/2

εQt+1 (6)
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which is clearly a special case of (1).

The Casassus and Collin-Dufresne (2005) model in discrete time is:


∆Xt+1

∆δ̂t+1

∆rt+1

 =


κPXθ

P
X + κPXrθ

P
r + κP

Xδ̂
θP
δ̂

κP
δ̂
θP
δ̂

κPr θ
P
r

+


−κPX −κP

Xδ̂
−κPXr

0 −κP
δ̂

0

0 0 −κPr




Xt

δ̂t

rt

+


σX 0 0

0 σδ̂ 0

0 0 σr




1

ρXδ 1

ρXr ρδr 1


1/2

εPt+1

(7)


∆Xt+1

∆δ̂t+1

∆rt+1

 =


αXθ

Q
X + (αr − 1)θQr + θQ

δ̂

κQ
δ̂
θQ
δ̂

κQr θ
Q
r

+


−αX −1 1− αr

0 −κQ
δ̂

0

0 0 −κQr




Xt

δ̂t

rt

+


σX 0 0

0 σδ̂ 0

0 0 σr




1

ρXδ 1

ρXr ρδr 1


1/2

εQt+1

(8)

(see their formulas 7, 12, 13 and 27, 28, 30).
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2 JPS Parametrization

I assume that NL linear combinations of log futures prices are measured without error,

PLt = Wft

for any full-rank real valued NL × J matrix W , and show that any model of the form

 ∆Lt+1

∆Mt+1

 = ∆Xt+1 = KP
0X +KP

1XXt + ΣXε
P
t+1

∆Lt+1 = KQ
0L +KQ

1LXt + ΣLε
Q
L,t+1

st = δ0 + δ′1Xt

(9)

is observationally equivalent to a unique model of the form

 ∆PLt+1

∆Mt+1

 = ∆Zt+1 = KP
0 +KP

1Zt + ΣZε
P
Z,t+1

∆PLt+1 = KQ
0 +KQ

1 Zt + ΣPεQt+1

st = ρ0 + ρ′1Zt

(10)

which is parametrized by θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ).

The proof follows that of Joslin, Priebsch and Singleton (2014). Joslin, Singleton and

Zhu (2011) solves with no macro factors over all cases including zero, repeated and complex

eigenvalues.

Assume the model (9) under consideration is nonredundant, that is, there is no observa-

tionally equivalent model with fewer than N state variables. If there is such a model, switch

to it and proceed.
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2.1 Observational Equivalence

Given any model of the form (9), the J × 1 vector of log futures prices ft is affine in Lt,

ft = AL +BLLt

Hence the set of NL linear combinations of futures prices, PLt , is as well:

PLt = WLft = WLAL +WLBLLt

Assume that the NL ordered elements of λQ, the eigenvalues of KQ
1L, are real, distinct

and nonzero. There exists a matrix C such that KQ
1L = Cdiag(λQ)C−1. Define D =

Cdiag(δ1)C−1, D−1 = Cdiag(δ1)−1C−1 and

Yt = D[Lt +
(
KQ

1L

)−1
KQ

0L]

⇒ Lt = D−1Yt −
(
KQ

1L

)−1
KQ

0L

Then

∆Yt+1 = D∆Lt+1

= D[KQ
0L +KQ

1L(D−1Yt −
(
KQ

1L

)−1
KQ

0L) + ΣLε
Q
L,t+1]

= diag(λQ)Yt +DΣLε
Q
L,t+1
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and

 ∆Yt+1

∆Mt+1

 =

 D 0

0 IM

 [KP
0X +KP

1X(

 D−1 0

0 IM


 Yt

Mt

−

(
KQ

1L

)−1
KQ

0L

0

)+ΣXε
P
t+1]

= KP
0Y +KP

1Y

 Yt

Mt

+

 D 0

0 IM

ΣXε
P
t+1

and

pt = δ0 + δ′1Lt = δ0 + δ′1D
−1Yt − δ′1

(
KQ

1L

)−1
KQ

0L = p∞ + ι · Yt

where ι is a row of NL ones.

ft = AY +BY Yt

PLt = Wft = WAY +WBY Yt

The model is nonredundant ⇒ WBY is invertible:

Yt = (WBY )−1PLt − (WBY )−1WAY

·PLt+1 = WBY ∆Yt+1 = WBY diag(λQ)[(WBY )−1PLt − (WBY )−1WAY ] +WBYDΣLε
Q
L,t+1

= KQ
0 +KQ

1 PLt + ΣPεQt+1

Further,

∆Zt+1 =

 ·PLt+1

∆Mt+1

 =

 WBY 0

0 IM


 ∆Yt+1

∆Mt+1


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=

 WBY 0

0 IM


KP

0Y +KP
1Y

 Yt

Mt

+

 D 0

0 IM

ΣXε
P
t+1


= KP

0 +KP
1Zt + ΣZε

P
t+1

pt = p∞ + ι · Yt = p∞ + ι · (WBY )−1PLt − ι · (WBY )−1WAY = ρ0 + ρ′1PLt

Collecting the formulas: given any model of the form (1), there is an observationally

equivalent model of the form (4), parametrized by θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ), where

• D = Cdiag(δ1)−1C−1

• ΣZ =

 WBYD 0

0 IM

ΣX , ΣP = [ΣZ ]LL

• BY =


ι′[IL+M + diag(λQ)]

...

ι′[IL+M + diag(λQ)]J



• AY =


p∞ + 1

2ι
′ΣPΣ′Pι
...

AY,J−1 + 1
2BY,J−1ΣPΣ′PB′Y,J−1


• KQ

1 = WBY diag(λQ)(WBY )−1, KQ
0 = −KQ

1 WAY

• ρ0 = p∞ − ι · (WBY )−1WAY , ρ
′
1 = ι · (WBY )−1

In estimation I adopt the alternate form

• ∆Yt+1 =

 p∞

0

+ diag(λQ)Yt +DΣXε
Q
t+1
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• pt = ι · Yt

• AY =



p∞ + 1
2ι
′ΣPΣ′Pι
...

AY,J−1 +BY,J−1

 p∞

0

+ 1
2BY,J−1ΣPΣ′PB′Y,J−1



• KQ
1 = WBY diag(λQ)(WBY )−1, KQ

0 = WBY

 p∞

0

−KQ
1 WAY

• ρ0 = −ι · (WBY )−1WAY , ρ
′
1 = ι · (WBY )−1

which is numerically stable when λQ(1)→ 0. See the online supplement to JSZ 2011.

2.2 Uniqueness

We consider two models of the form (4) with parameters θ and θ̂ = (λ̂Q, p̂∞, Σ̂Z , K̂
P
0 , K̂

P
1 )

that are observationally equivalent and show that this implies θ = θ̂.

Since Zt =

 PLt
Mt

 are all observed, {ΣZ , K
P
0 , K

P
1 } = {Σ̂Z , K̂

P
0 , K̂

P
1 }.

Since ft = A+BZt are observed, A(θ) = A(θ̂), B(θ) = B(θ̂).

Suppose λQ 6= λ̂Q. Then by the uniqueness of the ordered eigenvalue decomposition,

Bj
Y (λ) 6= Bj

Y (λ̂)∀j

⇒ WBY (λ) 6= WBY (λ̂) ⇒ (WBY (λ))−1 6= (WBY (λ̂))−1

⇒ ρ1(λ) 6= ρ1(λ̂) ⇒ B(λ) 6= B(λ̂)

, a contradiction. Hence λQ = λ̂Q. Then A(λQ, p∞) = A(λ̂Q, p̂∞) ⇒ p∞ = p̂∞.
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3 Estimation

Given the futures prices and macroeconomic time series {ft, Mt}t=1,...,T and the set of port-

folio weights W that define the pricing factors:

Pt = Wft

we need to estimate the minimal parameters θ = (λQ, p∞, ΣZ , K
P
0 , K

P
1 ) in the JPS

form. The estimation is carried out by maximum likelihood (MLE). If no restrictions are

imposed (i.e. we are estimating the canonical model (9)), then KP
0 , K

P
1 do not affect futures

pricing and are estimated consistently via OLS. Otherwise KP
0 , K

P
1 are obtained by GLS

taking the restrictions into account. The OLS estimate of ΣZ is used as a starting value, and

the starting value for p∞ is the unconditional average of the nearest-maturity log futures

price. Both were always close to their MLE value. Finally we search over a range of values

for the eigenvalues λQ.

After the MLE estimate of the model in the JPS form is found, we rotate and translate

the spanned factors from P1
t , P2

t to st, ct as described in 1.2. we rotate and translate UMt

to Mt, so that the estimate reflects the behavior of the time series Mt:


st

ct

Mt

 =


ρ0

1
2σ

2
s + ρ1K

Q
0

αMP

+


ρ1 01×NM

ρ1K
Q
1 01×NM

0NM×1 βMP


 Pt

UMt



where

Mt = αMP + βMPPt + UMt
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4 Robustness Checks

4.1 Alternative Measures of Real Activity

The predictability I find using the Chicago Fed National Activity Index also holds using

other forward-looking measures of real activity. In this section I show that the same results

obtain using the Aruoba-Diebold-Scotti (ADS)1 index or the Conference Board’s Leading

Economic Index (LEI)2 in place of the CFNAI.

The LEI is a weighted forward-looking index of real activity like the CFNAI, but uses

different weights and macroeconomic time series. The ADS index is a real-time forward-

looking index of real activity that is extracted by filtering from a third set of macroeconomic

time series. The time series are similar because all three are intended as forward-looking

measures of real activity, but they are not identical: the correlation between the ADS index

and the CFNAI is 83.8% in levels and 58.7% in changes while the correlation between the

LEI and the CFNAI is 8.6% in levels and 25.3% in changes.

Table 1 shows the results of the return forecasting regressions using the ADS index, and

Table 1 using the LEI. We see that both alternative indices forecast oil futures returns and

prices in the same directions as the CFNAI, conditional on the information in the oil futures

curve.

Table 3 shows the feedback matrix KP
1 implied by estimating the affine model using the

ADS index or the LEI in place of the CFNAI. Both the ADS index and the LEI forecast a

higher spot price of oil (top right) and the spot price of oil negatively forecasts a lower value

of both indices (bottom left). Thus, the main conclusions are the same using alternative

measures of real activity.
1https://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index/
2https://www.conference-board.org/data/bcicountry.cfm?cid=1
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Table 1: Panel A shows the results of forecasting the returns to the short-roll and 3 month
excess-holding strategies in oil futures. Panel B shows the results of forecasting changes in
the principal components of log futures prices. The forecasting variables are 1) three sets
of ’reduced-form’ state variables Pt based on oil futures prices and 2) the Aruoba-Diebold-
Scotti index ADSt plus log oil inventory INVt. The data are monthly from from 1/1986 to
6/2014. Newey-West standard errors with 6 lags are in parentheses.

Panel A: Forecasting Returns

rt+1 = α + βADS,INVMt + βPPt + εt+1

Short Roll Return Excess Holding Return
ADSt 0.0314∗∗ 0.0291∗∗ 0.0290∗ −0.0023∗∗ −0.0018∗ −0.0017∗

(0.0141) (0.0144) (0.0148) (0.0011) (0.0010) (0.0009)
INVt 0.0197 0.0215 0.0166 −0.0030 −0.0062 −0.0068

(0.0915) (0.0917) (0.0890) (0.0105) (0.0096) (0.0096)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 341 341 341 339 339 339
Adj. R2(Pt) 0.4% 0.7% 4.6% 5.5% 9.4% 10.3%

Adj. R2(Pt +Mt) 3.7% 3.3% 7.1% 7.6% 10.8% 11.6%

Panel B: Forecasting PCs

∆PCt+1 = α+ βADS,INVMt + βPPt + εt+1

∆PC1 ∆PC2

ADSt 0.084∗ 0.081∗ 0.082∗ 0.0108∗∗ 0.0098∗∗ 0.0100∗∗
(0.043) (0.044) (0.046) (0.0049) (0.0047) (0.0046)

INVt 0.0031 -0.0161 -0.0346 0.0339 0.0418 0.0392
(0.2499) (0.2462) (0.2422) (0.0549) (0.0495) (0.0463)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 341 341 341 341 341 341
Adjusted R2(Pt) -0.4% -0.5% 2.9% 6.5% 8.0% 10.3%

Adj. R2(Pt +Mt) 2.6% 2.1% 5.6% 7.6% 9.0% 11.3%
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Table 2: Panel A shows the results of forecasting the returns to the short-roll and 3 month
excess-holding strategies in oil futures. Panel B shows the results of forecasting changes in
the principal components of log futures prices. The forecasting variables are 1) three sets of
’reduced-form’ state variables Pt based on oil futures prices and 2) the Leading Economic
Index (LEIt) plus log oil inventory INVt. The data are monthly from from 1/1986 to 6/2014.
Newey-West standard errors with 6 lags are in parentheses.

Panel A: Forecasting Returns

rt+1 = α + βLEI,INVMt + βPPt + εt+1

Short Roll Return Excess Holding Return
LEIt 0.172∗ 0.182∗∗ 0.174∗∗ −0.0049 −0.0050 −0.0040

(0.090) (0.084) (0.083) (0.0081) (0.0062) (0.0059)
INVt 0.179 0.182 0.173 −0.0089 −0.0118 −0.0118

(0.134) (0.131) (0.128) (0.0131) (0.0113) (0.0108)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 341 341 341 339 339 339
Adj. R2(Pt) 0.4% 0.7% 4.6% 5.5% 9.4% 10.3%

Adj. R2(Pt +Mt) 2.3% 2.7% 6.3% 5.4% 9.5% 10.4%

Panel B: Forecasting PCs

∆PCt+1 = α+ βLEI,INVMt + βPPt + εt+1

∆PC1 ∆PC2

LEIt 0.513∗∗ 0.544∗∗ 0.525∗∗ 0.0842∗∗ 0.0584 0.0597
(0.253) (0.243) (0.239) (0.0369) (0.0365) (0.0368)

INVt 0.467 0.457 0.428 0.1074 0.0938 0.0928
(0.380) (0.376) (0.373) (0.0580) (0.0533) (0.0502)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 341 341 341 341 341 341
Adjusted R2(Pt) -0.4% -0.5% 2.9% 6.5% 8.0% 10.3%

Adj. R2(Pt +Mt) 1.9% 1.8% 5.0% 8.0% 8.7% 11.0%
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Table 3: Maximum likelihood (ML) estimates of the macro-finance model for Nymex crude
oil futures, using data from 1/1986 to 6/2014. s, c are the spot price and annualized cost of
carry respectively. ADS and LEI are the Aruoba-Diebold-Scotti index and the Conference
Board Leading Economic Index respectively. INV is the log of the private U.S. crude oil
inventory as reported by the EIA. The coefficients are over a monthly horizon, and the state
variables are de-meaned. ML standard errors are in parentheses.

Panel A: Aruoba-Diebold-Scotti (ADS) Index

KP
1

st ct ADSt
∆st+1 -0.004 0.059∗∗ 0.031∗∗∗

(0.008) (0.027) (0.009)
∆ct+1 0.014∗ −0.127∗∗∗ −0.019∗∗

(0.008) (0.025) (0.009)
∆ADSt+1 −0.069∗∗ 0.079 −0.264∗∗∗

(0.033) (0.107) (0.036)

Panel B: Conference Board Leading Economic Index (LEI)

KP
1

st ct LEIt
∆st+1 −0.028∗∗ 0.061∗∗ 0.126∗∗

(0.011) (0.027) (0.054)
∆ct+1 0.028∗∗∗ −0.128∗∗∗ -0.074

(0.010) (0.025) (0.050)
∆LEIt+1 −0.002∗∗ -0.001 0.003

(0.001) (0.002) (0.003)
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4.2 Excluding the Financial Crisis

Inspecting the data, we question whether the results in the paper are driven by a few in-

fluential observations – in particular the huge swings in oil prices and real activity during

2008-2009. Table 4 presents the forecasting regressions estimated on a subsample from Jan-

uary 1986 to December 2007. We see that the conclusions are the same, and indeed the

forecasting power of GRO is slightly stronger when we omit 2008-2014.

Table 5 presents the full model estimated on the subsample from January 1986 to De-

cember 2007. The subsample estimate is similar to the full-sample estimate, and the key

coefficients of ∆GROt+1 on st and ∆st+1 on GROt remain statistically significant.

4.3 Time Varying Volatility

This section examines the results of the forecasting regressions when we add measures of time-

varying volatility in oil futures. If volatility drives a higher hedge premium, then volatility

might be an omitted factor that explains the positive association between real activity and

the oil price forecast. I examine three standard volatility measures: optvolt is the implied

volatility from short-term options on oil futures, garchvolt is the conditional volatility of

∆f 1
t+1 estimated as a GARCH(1,1) process, and sqchgt is the lagged squared change (∆f 1

t )2

of the nearby log futures price.

Table 6 shows that the crude oil volatility indexes are indeed negatively correlated with

GRO. However, time-varying volatility does not forecast oil prices or returns, and thus

does not explain the forecasting power of real activity. Table 7 shows that none of the

volatility factors is significant in the forecasting regressions, none of them significantly raises

the adjusted R2, and (most importantly) their inclusion does not alter the forecasting power

of real activity.
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Table 4: Panel A shows the results of forecasting the returns to the short-roll and 3 month
excess-holding strategies in oil futures. Panel B shows the results of forecasting changes in
the principal components of log futures prices. The forecasting variables are 1) three sets of
’reduced-form’ state variables Pt based on oil futures prices and 2) the real activity index
GROt and log oil inventory INVt. The data are monthly from from 1/1986 to 12/2007.
Newey-West standard errors with six lags are in parentheses.

Panel A: Forecasting Futures Returns

rt+1 = α + βGRO,INVMt + βPPt + εt+1

Short Roll Return Excess Holding Return
GROt 0.0300∗∗∗ 0.0281∗∗∗ 0.0249∗∗ −0.0015∗ −0.0013 −0.0013

(0.0089) (0.0092) (0.0096) (0.0009) (0.0009) (0.0009)
INVt -0.026 -0.022 -0.018 0.0167 0.0124 0.0116

(0.120) (0.115) (0.104) (0.123) (0.120) (0.122)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 263 263 263 263 263 263
Adj. R2(Pt) -0.5% -0.2% 5.6% 10.6% 12.6% 12.7%

Adj. R2(Pt +Mt) 2.3% 2.0% 7.1% 12.8% 13.6% 13.5%

Panel B: Forecasting PCs

∆PCt+1 = α+ βGRO,INVMt + βPPt + εt+1

∆PC1 ∆PC2

GROt 0.0845∗∗∗ 0.0810∗∗∗ 0.0729∗∗∗ 0.0067 0.0067 0.0056
(0.0227) (0.0236) (0.0243) (0.0057) (0.0057) (0.0060)

INVt -0.014 -0.051 -0.039 -0.002 0.004 0.001
(0.296) (0.270) (0.248) (0.092) (0.084) (0.078)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 263 263 263 263 263 263
Adjusted R2(Pt) -0.5% -0.3% 5.6% 7.4% 8.5% 10.8%

Adj. R2(Pt +Mt) 2.7% 2.6% 7.7% 7.1% 8.3% 10.4%
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Table 5: Maximum likelihood (ML) estimate of the macro-finance model for Nymex crude
oil futures using data from 1/1986 to 12/2007. s, c are the spot price and annualized cost
of carry respectively. GRO is the monthly Chicago Fed National Activity Index. INV is
the log of the private U.S. crude oil inventory as reported by the EIA. The coefficients are
over a monthly horizon, and the state variables are de-meaned. ML standard errors are in
parentheses.

KP
0 KP

1
st ct GROt INVt

st+1 0.011 -0.005 0.058 0.029∗∗∗ -0.005
(0.007) (0.014) (0.036) (0.011) (0.106)

ct+1 -0.012 0.026∗ −0.130∗∗∗ -0.012 0.003
(0.007) (0.014) (0.036) (0.011) (0.108)

GROt+1 0.057 −0.181∗∗ 0.651∗∗∗ −0.580∗∗∗ -1.653
(0.035) (0.070) (0.178) (0.054) (0.526)

INVt+1 0.003 −0.007∗ 0.033∗∗∗ -0.003 −0.125∗∗∗
(0.002) (0.004) (0.009) (0.003) (0.027)

KQ
0 KQ

1
st ct

st+1 -0.003 0.000 0.083∗∗∗
(0.007) (0.005) (0.011)

ct+1 0.000 -0.009 −0.113∗∗∗
(0.012) (0.014) (0.031)

Shock Volatilities
[off-diagonal = % correlations]
s c GRO INV

s 0.102
c -84% 0.056

GRO 7% -1% 0.499
INV -20% 29% 2% 0.024
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Table 6: The table shows the correlations of the monthly real activity index GRO and three
indexes of time varying volatility in crude oil prices. The time series are monthly from
1/1989 to 6/2014 and have been demeaned. garchvolt is the conditional volatility of ∆f 1

t+1
estimated as a GARCH(1,1) process. optvolt is the implied volatility based on the prices
of at-the-money options on one month futures. sqchgt is the squared change (∆f 1

t )2 of the
front-month futures contract last month.

GROt sqchgt optvolt garchvolt
GROt 1
sqchgt -24.8% 1
optvolt -54.9% 50.7% 1
garchvolt -51.8% 27.6% 68.7% 1

4.4 Year-on-Year Changes

Although futures returns are a stationary process, they may contain slow-moving components

i.e. time varying expected returns or regime shifts that are effectively nonstationary over

a monthly horizon. Log futures prices ft and the principal components portfolios Pt that

summarize them are themselves nonstationary or very close to it. In this setting, forecasting

regressions may have poor small-sample properties.

To address this concern I rerun the forecasting regressions after transforming ft and PCt

into year-on-year changes. The macro variables Mt are not transformed as they are strongly

stationary in the first place, and year-on-year differencing would eliminate the important

variation in GRO (i.e. at business cycle frequency). Table 8 shows that after removing

persistence in the regressors, the incremental forecasting power of real activity for futures

returns and changes in the level factor is effectively unchanged.
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Table 7: The table shows the results of forecasting returns to oil futures including measures
of time-varying volatility. The data are monthly from 1/1986 to 6/2014 except optvol which
is monthly from 1/1989 to 6/2014. The forecasting variables are GROt, and the first two
PCs of log oil futures prices, and three measures of crude oil volatility. optvolt is the implied
volatility based on the prices of at-the-money options on one month futures. garchvolt is
the conditional volatility of ∆f 1

t+1 estimated as a GARCH(1,1) process. sqchgt is the lagged
squared change (∆f 1

t )2 of the log price of the first nearby futures contract. Newey-West
standard errors with six lags are in parentheses.

Panel A: Forecasting Futures Returns

rt+1 = α + βGROMt + βPPC
1,2
t + βV OLV OLt + εt+1

Short Roll Return Excess Holding Return
GROt 0.023∗∗ 0.027∗∗∗ 0.029∗∗ −0.0010 −0.0022∗∗ −0.0018∗∗

(0.010) (0.009) (0.012) (0.0009) (0.0008) (0.0008)
optvolt -0.009 0.0047∗

(0.018) (0.0024)
garchvolt -0.167 0.0574

(0.432) (0.0474)
sqchgt 0.002 0.0016

(0.008) (0.0014)
T 295 341 341 293 339 339

Adj. R2(Pt +GROt) 4.1% 4.5% 4.5% 7.4% 9.7% 9.7%
Adj. R2(Pt +GROt + V OLt) 3.9% 4.3% 4.2% 11.2% 11.1% 11.5%

Panel B: Forecasting PCs

∆PCt+1 = α + βGROMt + βPPC
1,2
t + βV OLV OLt + εt+1

∆PC1 ∆PC2

GROt 0.063∗∗ 0.067∗∗∗ 0.076 −0.0093∗ 0.0107∗∗∗ 0.0113∗∗
(0.028) (0.025) (0.034) (0.0054) (0.0035) (0.0046)

optvolt -0.011 -0.0011
(0.048) (0.0090)

garchvolt -0.852 0.094
(1.071) (0.273)

sqchgt 0.0095 0.0024
(0.0197) (0.0034)

T 295 341 341 295 341 341
Adj. R2(Pt +GROt) 2.8% 3.0% 3.0% 7.2% 8.5% 8.5%

Adj. R2(Pt +GROt + V OLt) 2.5% 3.1% 2.8% 6.8% 8.3% 8.3%
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Table 8: Panel A shows the results of forecasting the returns to the short-roll and 3 month
excess-holding strategies in oil futures. Panel B shows the results of forecasting changes in
the principal components of log futures prices. The forecasting variables are 1) three sets
of year-on-year changes in the spanned state variables based on oil futures prices and 2)
the real activity index GROt and log oil inventory INVt. The data are monthly from from
1/1986 to 6/2014. Newey-West standard errors with six lags are in parentheses.

Panel A: Forecasting Futures Returns

rt+1 = α + βGRO,INVMt + βP
(
P1,2
t − P1,2

t−12

)
+ εt+1

Short Roll Return Excess Holding Return
GROt 0.0283∗∗∗ 0.0277∗∗ 0.0271∗∗ −0.0034∗∗∗ −0.0032∗∗∗ −0.0029∗∗∗

(0.0109) (0.0112) (0.0114) (0.0009) (0.0009) (0.0009)
INVt -0.039 -0.048 -0.050 0.0029 0.0022 0.0024

(0.079) (0.072) (0.070) (0.0070) (0.0065) (0.0064)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 329 329 329 327 327 327
Adj. R2(Pt) 2.4% 2.2% 1.2% 3.2% 4.9% 7.0%

Adj. R2(Pt +Mt) 6.5% 5.9% 4.6% 10.5% 10.9% 11.7%

Panel B: Forecasting PCs

∆PCt+1 = α+ βGRO,INVMt + βP
(
P1,2
t − P

1,2
t−12

)
+ εt+1

∆PC1 ∆PC2

GROt 0.095∗∗ 0.091∗∗ 0.088∗ 0.010 0.009 0.008
(0.043) (0.045) (0.046) (0.006) (0.007) (0.007)

INVt -0.231 -0.270 -0.287 0.051 0.034 0.030
(0.281) (0.254) (0.251) (0.060) (0.056) (0.055)

Spanned Factors Pt : PC1,2 PC1−5 f1−12 PC1,2 PC1−5 f1−12

T 329 329 329 329 329 329
Adjusted R2(Pt) 5.7% 5.7% 7.7% 9.0% 9.5% 11.5%

Adj. R2(Pt +Mt) 8.4% 8.1% 10.0% 9.4% 9.6% 11.5%
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Table 9: Parameters of the calibration for computing real option values

KP
0 KP

1
st ct GROt

st+1 0.00 1.00 0.083 0.03
ct+1 0.00 0.00 0.90 0.00

GROt+1 0.00 -0.10 0.00 0.60

KQ
0 KQ

1
st ct GROt

st+1 0.00 1.00 0.083 0.00
ct+1 0.00 0.00 0.90 0.00

GROt+1 −λ -0.10 0.00 0.60

Σ
s c GRO

s 0.10
c -0.08 0.06

GRO 0 0 0.50

5 Real Option Valuation – Details

I model the log lifting cost (per-barrel cost of extraction) as

lt = κl + 0.1st + 0.01GROt + εlt, ε
l
t ∼ N(0, σl)

That is, lt varies with both st and GROt as well as having an i.i.d. idiosyncratic compo-

nent with volatility σl. The other parameters in the simulated data are in Table 9. Notice the

third row of KQ
1 , which was not present in the model estimates. Pricing assets with payoffs

that depend on Mt requires the risk neutral dynamics of Mt. In principle one could estimate

the risk neutral dynamics of Mt with a tracking portfolio for GRO, but for simplicity I

assume that exposure to GRO carries a fixed risk premium of λ.

I compute option values for different starting values of the lifting cost L0 = exp(l0), with

S0 = exp(s0) equal to $80 per barrel and c0 = 0. This simulates an oil firm evaluating wells

that differ in their current lifting cost, conditional on a spot price of $80 and a flat futures

curve.
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